
Pseudoinstructions

Introduction

Pseudoinstructions means "fake instruction". You might wonder why they

exist. When designing a modern ISA, one criteria is to decide whether an

instruction should be part of the ISA or not. In the past, if you could see a use

for the instruction, it was often added to ther instruction set. This lead to

bloated and slow implementations.

In the 1980s, researcher began questioning the assumptions of how to design an

ISA. The original thinking was to write ISAs that would be compact and useful

to compiler writers. Compactness was important because memory was very

expensive up until the 1980's.

Thus, instructions were often variable-sized, i.e., some instructions had as few

as one byte, to as many as, say, 8 or more bytes. The thinking was "why use

any more bytes than necessary".

Once memory became cheaper, it was reasonable to think that perhaps

instruction sizes could be larger, and perhaps fixed in size. This would allow

hardware designers to use advanced techniques like pipelining. By having

equal sized instructions, it was easier to fetch the instructions, because no

decoding was required.

Initially, RISC ISA designers thought that minimizing the total number of

instructions was the best way to go. Fewer instructions meant simpler

hardware, and simpler hardware meant easier optimization.

Fewer instructions also meant larger volume of code. What used to be executed

in one CISC instruction might require ten or more RISC instructions. The hope

was that faster hardware (and caches) would offset the increase in code size.

This turned out not to be the case. It was decided that the best way to decide

whether an instruction should or should not be included was benchmarking.

Use typical C or FORTRAN code, and compile it to assembly. Run the code on

a CPU, and see if the time to execute runs significantly faster with the

instruction as opposed to without. If it performs better, leave the instruction in.

If not, leave it out.

This idea was fairly revolutionary. Instead of designing for compiler writers

and memory, the idea was to design ISAs for performance.

However, by taking out some instructions, assembly language programmers

would find it a little harder to write code. To make it easier for them,

pseudoinstructions were added. Pseudoinstructions do not correspond to real

MIPS instructions.

Instead, the assembler, a program that converts assembly language programs to

machine code, would then translate pseudoinstructions to real instructions,

usually requiring at least one on more instructions.

Pseudoinstructions not only make it easier to program, it can also add clarity to

the program, by making the intention of the programmer more clear.

Pseudo instructions

Here's a list of useful pseudo-instructions.

 mov $rt, $rs

Copy contents of register s to register t, i.e. R[t] = R[s].

 li $rs, immed

Load immediate into to register s, i.e. R[s] = immed. The way this is

translated depends on whether immed is 16 bits or 32 bits.

 la $rs, addr

Load address into to register s, i.e. R[s] = addr.

 lw $rt, big($rs)

Load a word into memory with a 32-bit offset (called big). Notice that

this is normally not allowed, because only 16-bit offsets are permitted.

Similar pseudo-instructions exist for sw, etc.

There are a series of branch instructions that are also useful. Other ISAs often

have pseudo-instructions for the convenience of the programmer.

Translating Some Pseudoinstructions

Pseudoinstruction Translation

mov $rt, $rs addi $rt, $rs, 0

li $rs, small addi $rt, $rs, small

li $rs, big
lui $rs, upper(big)

ori $rs, $rs, lower(big)

la $rs, big
lui $rs, upper(big)

ori $rs, $rs, lower(big)

lw $rt, big($rs)

lui $t0, upper(big)

ori $t0, $t0, lower(big)

add $t0, $rs, $t0

lw $rt, 0($t0)

where small means a quantity that can be represented using 16 bits,

and big means a 32 bit quantity. upper(big) is the upper 16 bits of a 32 bit

quantity. The assembler must figure out how to get the upper 16 bits of a 32-bit

value (that takes a little work). lower(big) is the lower 16 bits of the 32 bit

quantity. Again, the assembler must figure out. Thus, upper(big) and lower(

big) are not real instructions.

If you were to do the translation, you'd have to break it up yourself to figure out

those quantities.

